Sains
Malaysiana 52(8)(2023): 2163-2173
http://doi.org/10.17576/jsm-2023-5208-01
Oil Based Inactivated Vaccine
Formulation for Furunculosis (A. salmonicida) and Protective
Immune Response of Rainbow Trout and Brown Trout
(Formulasi Vaksin Tidak
Diaktifkan Berasaskan Minyak untuk Furunkulosis (A. salmonicida) dan
Tindak Balas Imun Pelindung bagi Trout Pelangi dan Trout Perang)
MUHAMMAD AKRAM1, MUHAMMAD HAFEEZ-UR-REHMAN1,*, FARZANA ABBAS1, IMRAN ALTAF2, SIDRA KANWAL3, KASHIF ALI4, NABILA GULZAR5, MUHAMMAD AJMAL5, MUHAMMAD ASAD4 & JAVAID IQBAL6
1University of
Veterinary and Animal Sciences, Department of Fisheries and Aquaculture,
Lahore, Punjab, Pakistan
2University of
Veterinary and Animal Sciences, Department of Microbiology, Lahore, Punjab,
Pakistan
3Department of Zoology, University of Okara, Pakistan
4Department of
Zoology, Univeristy of Okara
5Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
6Institute of Zoology, Bahauddin Zakariya University, Multan
Received:
31 January 2023/Accepted: 26 July 2023
Abstract
The development and growth of the fisheries and
aquaculture industries are significantly hampered by illnesses. It is critical
to combat pathogenic illnesses, especially bacterial ones. Furunculosis in
salmon is mostly brought on by Aeromonas
salmonicida in rainbow and brown trout. To control this pathogen, vaccines
have been identified as a significant tool. In the present study, we have
formulated an inactivated vaccine with oil as an adjuvant and estimated its
efficacy. The lethal dose of ArS-Pak-19, was calculated and injected
intraperitoneally to the fishes. To analyze the infection, samples of kidney,
liver, spleen, and blood were collected at specific times. To estimate the
immunogenicity of the vaccine, an experiment was designed. One hundred sixty
fishes were distributed into 8 tanks including, six experimental groups and two
control groups with its replicates, vaccines injected intraperitoneally 1.6 ×
107, 1.6 × 108, and 1.6 × 109 and blood
samples were taken fortnightly for 56 days to calculate the antibodies titers.
After immunization these groups were challenged with Aeromonas
salmonicida (ArS-Pak-19) intraperitoneally. At 7th day
of post infection, it appeared in the liver, spleen, and kidney. The relative
percentage of survival was estimated with control groups at 30 days after
challenge. The relative percentage of survival was 80%. The IgM titers were
higher at 24 days of post immunization. We also analyzed that antibodies
non-specifically bound with the A-layer of Aeromonas salmonicida. The
findings of this study offer evidence that vaccinations boost fishes immunity
and serve as a roadmap to further vaccination initiatives.
Keywords: Antibodies; IgM titres;
immunization; pathogen; pathogenicity
Abstrak
Pembangunan dan pertumbuhan industri perikanan dan akuakultur terjejas
dengan ketara oleh penyakit. Ia adalah penting untuk memerangi penyakit
patogen, terutamanya bakteria. Furunkulosis pada salmon kebanyakannya
disebabkan oleh Aeromonas salmonicida pada trout pelangi dan coklat perang.
Untuk mengawal patogen ini, vaksin telah dikenal pasti sebagai alat penting.
Dalam kajian ini, kami telah merumuskan vaksin yang tidak aktif dengan minyak
sebagai pembantu dan menganggarkan keberkesanannya. Dos maut ArS-Pak-19 telah
dihitung dan disuntik secara intraperitoneum kepada ikan. Untuk menganalisis
jangkitan, sampel buah pinggang, hati, limpa dan darah dikumpulkan pada masa
tertentu. Untuk menganggarkan keimunogenan vaksin, satu uji kaji telah direka.
Satu ratus enam puluh ikan telah diagihkan ke dalam 8 tangki termasuk, enam
kumpulan uji kaji dan dua kumpulan kawalan dengan replikasinya, vaksin yang
disuntik secara intraperitoneum 1.6 × 107, 1.6 × 108 dan
1.6 × 109 dan sampel darah diambil dua minggu sekali selama 56 hari
untuk menghitung titer antibodi. Selepas imunisasi kumpulan ini dicabar dengan Aeromonas
salmonicida (ArS-Pak-19) secara intraperitoneum. Pada hari ke-7 selepas
jangkitan, ia muncul di hati, limpa dan buah pinggang. Peratusan relatif
kemandirian dianggarkan dengan kumpulan kawalan pada 30 hari selepas cabaran.
Peratusan relatif kemandirian ialah 80%. Titer IgM lebih tinggi pada 24 hari
selepas imunisasi. Kami juga menganalisis bahawa antibodi tidak terikat secara
khusus dengan lapisan-A Aeromonas salmonicida. Penemuan kajian ini
menawarkan bukti bahawa vaksinasi meningkatkan imuniti ikan dan berfungsi
sebagai peta jalan kepada inisiatif vaksinasi selanjutnya.
Kata kunci: Antibodi; titer IgM; imunisasi; patogen; sifat patogen
REFERENCES
Adams,
A. & Subasinghe, R. 2019. Use of fish vaccines in aquaculture (including
methods of administration). Veterinary Vaccines for Livestock. 1st ed.
The Food and Agriculture Organization of the United Nations.
Alonso, M. & Leong, J.A.
2013. Licensed DNA vaccines against infectious hematopoietic necrosis virus
(IHNV). Recent Pat DNA Gene Seq. 7(1): 62-65.
Arkoosh, M.R., Dietrich,
J.P., Rew, M.B., Olson, W., Young, G. & Goetz, F.W. 2018. Exploring the
efficacy of vaccine techniques in juvenile sablefish, Anoplopoma fimbria.
Aquac Res. 49(1): 205-216.
Assefa, A. & Abunna, F.
2018. Maintenance of fish health in aquaculture: Review of epidemiological
approaches for prevention and control of infectious disease of fish. Vet.
Med. Int. 2018: 5432497.
Austin, B. & Austin, D.A.
2016. Aeromonadaceae representative (Aeromonas salmonicida). In Bacterial
Fish Pathogens: Disease of Farmed and Wild Fish. Springer, Cham. pp.
215-321.
Austin, B. & Austin, D.A.
2012. Vibrionaceae representatives. In Bacterial Fish Pathogens: Disease of
Farmed and Wild Fish. Springer, Dordrecht. pp. 357-411.
Brown, A.B., Whyte, S.K.,
Braden, L.M., Groman, D.B., Purcell, S.L. & Fast, M.D. 2020. Vaccination
strategy is an important determinant in immunological outcome and survival in
Arctic charr (Salvelinus alpinus) when challenged with atypical Aeromonas
salmonicida. Aquaculture 518: 734838.
Brudeseth, B.E., Wiulsrød,
R., Fredriksen, B.N., Lindmo, K., Løkling, K.E., Bordevik, M., Steine, N.,
Klevan, A. & Gravningen, K. 2013. Status and future perspectives of
vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 35(6): 1759-1768.
Brummett, R.
2014. Introduction, Reducing Disease Risk in Aquaculturee. World Bank
Group. pp. 1-9.
Castro, R., Jouneau, L.,
Pham, H.P., Bouchez, O., Giudicelli, V., Lefranc, M.P., Quillet, E.,
Benmansour, A., Cazals, F., Six, A. & Fillatreau, S. 2013. Teleost fish
mount complex clonal IgM and IgT responses in spleen upon systemic viral
infection. PloS Patho. 9(1): e1003098.
Chakraborty, S., Cao, T.,
Hossain, A., Gnanagobal, H., Vasquez, I., Boyce, D. & Santander, J. 2019.
Vibrogen‐2 vaccine trial in lumpfish (Cyclopterus lumpus) against Vibrio
anguillarum. Journal of Fish Diseases 42(7): 1057-1064.
Chandler, D.E. &
Roberson, R.W. 2009. Bioimaging: 2009 Current Concepts in Light and Electron
Microscopy. Massachusetts: Jones & Bartlett Publishers.
Cipriano, R.C. & Bullock,
G.L. 2001. Furunculosis and Other Diseases Caused by Aeromonas salmonicida. National Fish Health Research Laboratory.
Croisetiere, S., Tarte, P.D.,
Bernatchez, L. & Belhumeur, P. 2008. Identification of MHC class IIβ
resistance/susceptibility alleles to Aeromonas salmonicida in brook
charr (Salvelinus fontinalis). Mol. Immunol. 45(11): 3107-3116.
Dallaire-Dufresne, S., Tanaka,
K.H., Trudel, M.V., Lafaille, A. & Charette, S.J. 2014. Virulence, genomic
features, and plasticity of Aeromonas salmonicida subsp. salmonicida,
the causative agent of fish furunculosis. Vet Microbiol. 169(1-2): 1-7.
Elanco Canada Limited, Forte micro, 2020.
Eslamloo, K., Kumar, S.,
Caballero-Solares, A., Gnanagobal, H., Santander, J. & Rise, M.L. 2020.
Profiling the transcriptome response of Atlantic salmon head kidney to
formalin-killed Renibacterium salmoninarum. Fish Shellfish Immunol. 98:
937-949.
Fast, M.D., Tse, B., Boyd,
J.M. & Johnson, S.C. 2009. Mutations in the Aeromonas salmonicida subsp. salmonicida type III secretion system affect Atlantic salmon
leucocyte activation and downstream immune responses. Fish Shellfish
Immunol. 27(6): 721-728.
Grontvedt, R.N., Lund, V.
& Espelid, S. 2004. Atypical furunculosis in spotted wolffish (Anarhichas
minor O.) juveniles: Bath vaccination and challenge. Aquaculture.
232(1-4): 69-80.
Gudding, R. & Goodrich,
T. 2014. The history of fish vaccination. Fish Vacc. 12: 1-2.
Gudding, R. & Van
Muiswinkel, W.B. 2013. A history of fish vaccination: Science-based disease
prevention in aquaculture. Fish Shellfish Immunol. 35(6): 1683-1688.
Hnasko, R. 2015. ELISA, Methods and
Protocols. 1st ed. New York. Humana Press. X: 216.
Holten-Andersen, L.,
Dalsgaard, I. & Buchmann, K. 2012. Baltic salmon, Salmo salar, from
Swedish River Lule Älv is more resistant to furunculosis compared to rainbow
trout. PLoS ONE 7(1): e29571.
Hordvik, I. 2015.
Immunoglobulin isotypes in Atlantic salmon, Salmo salar. Biomolecules 5(1): 166-177.
Janda, J.M. & Abbott,
S.L. 2010. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin.
Microbiol. Rev. 23(1): 35-73.
Kamil, A., Falk, K., Sharma,
A., Raae, A., Berven, F., Koppang, E.O. & Hordvik, I. 2011. A monoclonal
antibody distinguishes between two IgM heavy chain isotypes in Atlantic salmon
and brown trout: Protein characterization, 3D modeling and epitope mapping. Mol.
Immunol. 48(15-16): 1859-1867.
Kjoglum, S., Larsen, S., Bakke, H.G. &
Grimholt, U. 2008. The effect of specific MHC class I and class II combinations
on resistance to furunculosis in Atlantic salmon (Salmo salar). Scand.
J. Immunol. 67: 160-168.
Klesius, P.H. & Pridgeon,
J.W. 2014. Vaccination against enteric septicemia of catfish. Fish Vac. 12: 211-225.
Krkosek, M. 2017. Population
biology of infectious diseases shared by wild and farmed fish. Can. J. of
Fish Aquat. Sci. 74(4): 620-628.
Leboffe, M.J. & Pierce,
B.E. 2015. Microbiology: Laboratory Theory and Application. Colorado:
Morton Publishing Company.
Lee, K.K. & Ellis, A.E.
1991. The role of the lethal extracellular cytolysin of Aeromonas
salmonicida in the pathology of furunculosis. J. Fish Dis. 14(4):
453-460.
Ling, X.D., Dong, W.T.,
Zhang, Y., Hu, J.J., Liu, J.X. & Zhao, X.X. 2019. A recombinant adenovirus
targeting typical Aeromonas salmonicida induces an antibody-mediated
adaptive immune response after immunization of rainbow trout. Microbial
Patho. 133: 103559.
Long, M., Zhao, J., Li, T.,
Tafalla, C., Zhang, Q., Wang, X., Gong, X., Shen, Z. & Li, A. 2015.
Transcriptomic and proteomic analyses of splenic immune mechanisms of rainbow
trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida subsp. salmonicida. J. Proteomics. 122: 41-54.
Lulijwa, R., Alfaro, A.C.,
Merien, F., Burdass, M., Venter, L. & Young, T. 2019. In vitro immune response of chinook salmon (Oncorhynchus tshawytscha) peripheral
blood mononuclear cells stimulated by bacterial lipopolysaccharide. Fish
Shellfish Immunol. 94: 190-198.
Magnadottir, B. 2010.
Immunological control of fish diseases. Marine Biotechnology 12:
361-379.
Magnadottir, B., Bambir,
S.H., Gudmundsdóttir, B.K., Pilström, L. & Helgason, S. 2002. Atypical Aeromonas salmonicida infection
in naturally and experimentally infected cod, Gadus morhua L. J. Fish
Dis. 25(10): 583-597.
Mahoney, R.T., Krattiger, A.,
Clemens, J.D. & Curtiss III, R. 2007. The introduction of new vaccines into
developing countries: IV: Global access strategies. Vaccine 25(20):
4003-4011.
Mashoof, S. &
Criscitiello, M.F. 2016. Fish immunoglobulins. Biology (Basel) 5(4): 45.
Midtlyng, P.J. 2016. Methods
for measuring efficacy, safety and potency of fish vaccines. In Fish
Vaccines, edited by Adams, A. Birkhauser Advances in Infectious Diseases. Springer, Basel. pp. 119-141.
Mikkelsen, H., Lund, V.,
Larsen, R. & Seppola, M. 2011. Vibriosis vaccines based on various
sero-subgroups of Vibrio anguillarum O2 induce specific protection in
Atlantic cod (Gadus morhua L.) juveniles. Fish Shellfish Immunol. 30(1):
330-339.
Parra, D., Takizawa, F. &
Sunyer, J.O. 2013. Evolution of B cell immunity. Annu. Rev. Anim. Biosci. 1(1): 65-97.
Patterson, H., Saralahti, A.,
Parikka, M., Dramsi, S., Trieu-Cuot, P., Poyart, C. & Rounioja, S. &
Rämet, M. 2012. Adult zebrafish model of bacterial meningitis in Streptococcus
agalactiae infection. Dev. Comp. Immunol. 38(3): 447-455.
PHARMAQ. Alpha Ject micro 4. 2020.
https://www.drugs.com/vet/alpha-ject-micro-4- 562 can.html
Pressley, M.E., Phelan III, P.E.,
Witten, P.E., Mellon, M.T. & Kim, C.H. 2005. Pathogenesis and inflammatory
response to Edwardsiella tarda infection in the zebrafish. Dev Comp
Immunol. 29(6): 501-513.
Ramakrishnan, M.A. 2016.
Review of the method of “right and wrong cases” (‘constant stimuli’) without
Gauss’s formula. World J. Virol. 5(2): 85-86.
Ronneseth, A., Ghebretnsae,
D.B., Wergeland, H.I. & Haugland, G.T. 2015. Functional characterization of
IgM+ B cells and adaptive immunity in lumpfish (Cyclopterus lumpus L.). Dev.
Comp. Immunol. 52(2): 132-143.
Sambrook, J. & Russell,
D.W. 2001. Molecular Cloning: A Laboratory Manual. 3rd ed. New York:
Cold Spring Harbor Lab. Press. p. 413.
Santander, J., Golden, G.,
Wanda, S.Y. & Curtiss III, R. 2012. Fur-regulated iron uptake system of Edwardsiella
ictaluri and its influence on pathogenesis and immunogenicity in the
catfish host. Infec Immun. 80(8): 2689-2703.
Santander, J., Mitra, A.
& Curtiss III, R. 2011. Phenotype, virulence and immunogenicity of Edwardsiella
ictaluri cyclic adenosine 3′, 5′-monophosphate receptor protein
(Crp) mutants in catfish host. Fish Shellfish Immunol. 31(6): 1142-1153.
Shefat, S.H. 2018. Vaccines
for infectious bacterial and viral diseases of fish. J. Bacteriol. Infec. 2(2): 1-5.
Shoemaker, C.A., Klesius, P.H.,
Evans, J.J. & Arias, C.R. 2009. Use of modified live vaccines in
aquaculture. J. World Aqua Soc. 40(5): 573-585.
Skugor, S., Jørgensen, S.M.,
Gjerde, B. & Krasnov, A. 2009. Hepatic gene expression profiling reveals
protective responses in Atlantic salmon vaccinated against furunculosis. BMC
Genomics 10(1): 1-5.
Sommerset, I., Krossøy, B.,
Biering, E. & Frost, P. 2005. Vaccines for fish in aquaculture. Exp.
Rev. Vac. 4(1): 89-101.
Starliper, C.E. 2011.
Bacterial coldwater disease of fishes caused by Flavobacterium
psychrophilum. J. Adv. Res. 2(2): 97-108.
Sughra, F.,
Rahman, M., Abbas, F. & Altaf, I. 2021. Evaluation of three
alum-precipitated Aeromonas hydrophila vaccines administered to Labeo
rohita, Cirrhinus mrigala and Ctenopharyngodon idella:
Immunokinetics, immersion challenge and histopathology. Brazilian Journal of
Biology 83: e249913.
Sundvold, H., Ruyter, B.,
Østbye, T.K. & Moen, T. 2010. Identification of a novel allele of
peroxisome proliferator-activated receptor gamma (PPARG) and its association
with resistance to Aeromonas salmonicida in Atlantic salmon (Salmo
salar). Fish Shellfish Immunol. 28(2): 394-400.
Valderrama, K.,
Soto‐Dávila, M., Segovia, C., Vásquez, I., Dang, M. & Santander, J.
2019. Aeromonas salmonicida infects Atlantic salmon (Salmo salar)
erythrocytes. J. Fish Dis. 42(11): 1601-1608.
Watts, J.E., Schreier, H.J.,
Lanska, L. & Hale, M.S. 2017. The rising tide of antimicrobial resistance
in aquaculture: Sources, sinks and solutions. Mar Drugs. 15(6): 158.
Yang, B., Duan, H., Cao, W.,
Guo, Y., Liu, Y., Sun, L., Zhang, J., Sun, Y. & Ma, Y. 2019. Xp11
translocation renal cell carcinoma and clear cell renal cell carcinoma with
TFE3 strong positive immunostaining: Morphology, immunohistochemistry, and FISH
analysis. Modern Pathology 32(10): 1521-1535.
Yin, X., Mu, L., Fu, S., Wu,
L., Han, K., Wu, H., Bian, X., Wei, X., Guo, Z., Wang, A. & Ye, J. 2019. Expression and
characterization of Nile tilapia (Oreochromis niloticus) secretory and
membrane-bound IgM in response to bacterial infection. Aquaculture 508:
214-222.
Zhang, Z., Niu, C., Storset,
A., Bøgwald, J. & Dalmo, R.A. 2011. Comparison of Aeromonas salmonicida resistant and susceptible salmon families: A high immune response is beneficial
for the survival against Aeromonas salmonicida challenge. Fish
Shellfish Immunol. 31(1): 1-9.
*Corresponding author;
email: mhafeezurehman@uvas.edu.pk
|